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Disclaimer Statement

The Exploration Studies Process, as explained in detail in Section 2 of Volume |, was a requirements
driven, iterative, and dynamic process developed for case study analysis. This process consisted of
three parts: (1) requirements generation, (2) implementation development, and (3) integrated case
study synthesis.

During the final step of the process, an integrated mission was developed for each of the case
studies by synthesizing the implementations developed earlier into a coherent and consistent
reference mission. These are presented in Section 3 of Volume | of this annual report. Given the
iterative and dynamic nature of this process, there are two important items to note:

«  The integrated case studies do not always reflect a mission that has a direct one-
to-one correspondence to the requirements specified in the March 3, 1989, Study
Requirements Document. Many changes were made to these requirements prior
to and during the synthesis activities when warranted.

«  The integrated case studies presented in Volume | represent the results of the
synthesis process. Volumes lI, lil, and IV are the implementation databases from
which the Integrated case studies were derived. Therefore, the implementations
outlined in Volumes II, lll, and IV are generally reflected in the integrated case
studies, but, in some cases, the implementations were changed in order to be
effectively included in the integrated case studies. These modifications are only
briefly discussed in Volumes Ii, lll, and IV.
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1 General

1.1 Overview

Significant progress has been made in both the maturity and depth of understanding of the
technology needs since the Interim Technology Assessment, dated March 15, 1989, was
distributed. The primary intent of this document is to provide the basis for developing the scope
and strategy for the space technology program,; that is, guide the technology programs of the Office
of Aeronautics and Space Technology (OAST). This document is organized as follows: Section
1, in addition to this overview, describes the approach used for defining technology requirements.
Secuon 2 is a summary of technology needs (this section also ranks technology needs and assesses
the availability). Section 3 summarizes the technology program. This summary focuses on the
Pathfinder and Civil Space Technology Initiative (CSTI) element programs. Section 4 provides
recommendations. Section 5 contains acknowledgements.

1.2 Technology Requirements Approach
1.2.1 Purpose

This section provides the FY89 assessment of technology needs for human exploration of the solar
system and is an update to the FY89 Interim Technology Assessment dated March 15, 1989.

1.2.2 Technology Needs Database (TNDB)

The data provided in this document represents the best estimate on cumulative results of FY88 and
FY89 studies and summarized information derived from the Technology Needs Database (TNDB).
The TNDB is an electronic database repository which contains the current information on each
technology. The TNDB will be published as a separate document and will be updated periodically
as new technology data becomes available.

1.2.3 Methodology and Ground Rules

The determination of technology needs at any point in time is based on the cumulative effort of
ongoing Office of Exploration (OEXP) studies. While the technology needs are largely driven by
case study results, data from trade, parametric, and special assessment studies are also taken into
consideration. Thus, all results of the case studies conducted to date have been used in the
generation of technology needs. For this particular evaluation, the technology needs are driven
mostly by the FY89 studies with FY88 study results included in the database. The information
contained in this database are based on conceptual designs and trade studies performed by
integration agents (IA’s) and special assessment agents (SAA’s).

Each technology need has been documented as specifically as possible. During early phases of
analysis it was appropriate to group potentially relevant technology needs under one entry in the
database. Once there was sufficient data to support detailed appraisal and comparison of alternate
technologies they were tracked separately and documented accordingly. The technology agent for
each IA was responsible for integrating the data from all available sources (other IA’s, SAA’s,
etc.) to establish the technology needs for his technical area. The SAA’s coordinated their data and
technical concerns with the appropriate IA. Exploration Technology Working Group (ExXTWG)
meetings served as a forum to discuss issues and support the ranking prioritization process.

Technology needs which were not supported by a benefit statement are not included in this

document. This benefit statement, to the extent possible, includes quantification of the benefit
(e.g., mass saved, reliability increased) and is supported by graphical and/or textual data.
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1.2.4 Prioritization Criteria

Determining the criteria for the prioritization of technologies was one of the more difficult tasks that
was accomplished during the study period. Drawing upon approaches developed by OAST, the
ExTWG formulated the following approach for prioritizing the technologies. The criteria defining
the technologies that were studied are a function of (1) the category (benefit) of the need; (2) the
timing of the need; and (3) the challenge (risk) perceived to perform the technology development as
shown in table 1.2.4-1.

Preliminary technology ranking was accomplished by the technology agents for each IA based on
needs within his area. The first step in the integration process was performed on technologies
from all sources that the IA needed to perform his specific mission. The next step in the integration
process was to have the EXTWG make a recommendation on a ranking of the technology needs
and list issues that could not be resolved by the EXTWG. Mission Analysis and Systems
Engineering (MASE) then adjusted the technology needs ranking to reflect the relative benefits
from an overall mission perspective. This formed the basis of the MASE recommendation to the
OEXP Director of Technology. The final ranking in this report was recommended by the OEXP
Director of Technology and approved by the OEXP Assistant Administrator.

TABLE 1.2.4-1 EXPLORATION RESEARCH AND TECHNOLOGY RANKING CRITERIA

Common

Need I

Categories | Enhancing v

Needs A Near Term : Post 1994 Pre 2004

Timing B Mid Term | Post 1997 Pre 2007

C  Far Term ? Post 2000 Pre 2010
Development 1  High Risk Fundamental R&D and/or no program in place
Risk/Challenge 2  MedRisk Components and/or program in place with limited funding
Low Risk On schedule; Program fully funded

Definitions:

Common required by all or most pathways and approaches. Specifically, a technology must be needed for
both lunar and Mars scenarios in order to be in this category.

Unique required by only one or two pathways or approaches that we, as an agency, wish to protect the
option for implementing

Enabling those technologies which must be available in order for the mission to be a success either from a
technical feasibility/performance aspect or from an affordability aspect

Enhancing those technologies which yield a significant net positive benefit in terms of capability and/or
affordability



The technology needs have been ranked according to the criteria defined in table 1.2.4-1. While
there is some grey area in the middle of the priority order, in general the combinations of need
category and timing yield the order of priority shown in table 1.2.4-II. Within each
category/timing priority group, those technologies with the highest risk are assigned the highest
priority. Clearly, those technologies which are enabling, needed in the initial phase of exploration,
and are of the greatest challenge (risk) to develop are of top priority.

TABLE 1.2.4-11 PRIORITIZATION OF TECHNOLOGY NEEDS

IA Common, Enabling, Near Term

A Unique, Enabling, Near Term

IB/IMA Common: Enabling, Mid Term & Enhancing, Near Term
OB/IVA Unique: Enabling, Mid Term & Enhancing, Near Term
B Common, Enhancing, Mid Term

IVB Unique, Enhancing, Mid Term

IC Common, Enabling, Far Term

IIC Unique, Enabling, Far Term

oc Common, Enhancing, Far Term

IvC Unique, Enhancing, Far Term






2 Summary of Technology Needs
2.1 Ranking of Technology Needs

The technology needs have been ranked according to the criteria presented in section 1.3 with
regards to need category (benefit), timing, and development challenge (risk). Clearly, those
technologies which are enabling, needed in the initial phase of exploration, and are the greatest
challenge to develop are of top priority. Table 2.1-I presents a listing of technology needs sorted
by priority. A discussion of each technology is provided in the appropriate Integration Area (IA) in
the TNDB.

One area lacking adequate definition at this time is the technology needs for science or “user”
payloads and systems. We anticipate that some of the instrumentation that will be used to take
advantage of opportunities in human exploration missions will require technology development.
We cannot identify these technology development needs at present, but will work with the Office
of Space Science and Applications (OSSA) to determine the appropriate technology areas and
required timeframes.

TABLE 2.1-1 TECHNOLOGY NEEDS BY RANK

Technology Ranking Functional Area Integration

Area

Construction technology . I A 2 CONSTRUCTION PSS
Surface Transportation Technology I A 2 CONSTRUCTION PSS
RLSS Supporting Technologies I A 2 LSS PSS
Trace Contaminant Control I A 2 LSS PSS
Waste Management I A 2 LSS PSS
Water Recovery/Management I A 2 LSS PSS
In-Space Vehicle Processing/Servicing I A 2 In-SpaceOps NODE
Aerocapture (Low Energy @ Earth) I A 2 AEROCAPTURE TRANS
Radiation Protection I A 2 Human Systems TRANS
Surface Power (< 1 MWe) I A 3 ENERGY PSS
EVA Systems Technology I A 3 Human Systems PSS
Atmosphere Revitalization I A 3 LSS PSS
Cryo Fluid Supply/Storage/Management I A 3 CRYOFLUID MGT NODE
Cryo Fluid Transfer/Handling I A 3 CRYOFLUIDMGT NODE
Chemical Ascent/Descent Engine I A 3 A/DCHEMPROP TRANS
Cryo Fluid Supply/Storage/Management I A 3 CRYOFLUID MGT TRANS
Cryo Fluid Transfer I A 3 CRYOFLUID MGT TRANS
Long-Lived Life Support Units I A 3 LSS TRANS
Advanced Chemical Transfer Engines I A 3 STV CHEM PROP TRANS
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Technology

Ranking

Functional Area

Integration
Area

Aerocapture (Low Energy @ Mars)
Aero Entry/Landing @ Mars
Nuclear Thermal Rocket Propulsion

Autonomous Rendezvous and Docking
Mobile Power Systems

Thermal Control

In-Space Assembly - Element Level
Autonomous Landing

Dust Contamination Control
Information Management

Ka-Band Communications Technology

Lunar Oxygen Production

Mining Technology

Mars Water Extraction

Mineral Beneficiation

Aerocapture (High Energy @ Earth)
Artificial Gravity Vehicle

Direct Entry @ Earth (High Energy)
Antificial-g Vehicle Deployment and Control
Tethers

Parachute System (Earth/Mars)

Inflatable Structures
Propellant Storage and Transfer

Surface Power (> 1 MWe)

Food Production

Essential Element Extraction

High Power Electric Propulsion (MW class)
Nuclear Power for NEP
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In-Space Ops

AEROCAPTURE
ENTRY SYSTEMS
STV NTR PROP

In-Space Ops
ENERGY

ENERGY

In-Space Ops
ENTRY SYSTEMS
Human Systems
COMMUNICATION
COMMUNICATION

ISRU

ISRU

ISRU

ISRU
AEROCAPTURE
ARTIFICIAL-G SYS
ENTRY SYSTEMS
ARTIFICIAL-G SYS
ARTIFICIAL-G SYS
ENTRY SYSTEMS

CONSTRUCTION
LAUNCH & LAND

ENERGY

LSS

ISRU

STV ELEC PROP
STV ELEC PROP

NODE
PSS
PSS
NODE

PSS
TRANS
TRANS

PSS
PSS
PSS
PSS

TRANS
TRANS
TRANS
TRANS
TRANS

PSS
PSS

PSS



Technology Ranking Functional Area Integration

Area
Aerocapture (Dual use @ Mars/Earth) IV C 1 AEROCAPTURE TRANS
Lunar Ceramics Production Iv C 2 ISRU PSS
Lunar Hydrogen Production Iv C 2 ISRU PSS
Lunar Metals Production Iv. C 2 ISRU PSS
Mars Atmospheric Oxygen Extraction Iv C 2 ISRU PSS
Phobos/Deimos Water Extraction Iv C 2 ISRU PSS
In situ Propellant Engines Iv C 2 STV CHEM PROP TRANS
Solar Power for SEP (MW class) Iv C 2 STV ELECPROP TRANS

Ranking Key:
Need Category I Common, Enabling

1| Unique, Enabling

m Common, Enhancing

v Unique, Enhancing
Needs Timing A Near Term

B Mid Term

C Far Term

1 High Risk

2 Med Risk

3 Low Risk

Development Risk

2.2 Crosscutting Technology Areas

A crosscutting technology is defined as a technology which cuts across two or more technology
areas of interest to the space exploration program. Application of a crosscutting technology to
other exploration technology areas enhances performance and reliability. Thus, crosscutting
technologies are critical to overall mission success. The crosscutting technologies include
automation; robotics; maintainability; operability; and fault detection, isolation, and recovery
(FDIR). Tables 2.2-I to 2.2-III provide an overview of the relationship of these crosscutting
technologies to the technology areas of interest to the space exploration program. The crosscutting
technologies are considered to be an integral part of all other technology areas and should be
applied wherever necessary to assure adequate performance.
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TABLE 2.2-1 CROSSCUTTING TECHNOLOGIES - PLANETARY SURFACE SYSTEMS

Technolo“ Automation Robotics Maintainahilitx Onerabilitx FDIR

Construction technology . . . . .
Surface Transportation Technology . . . . .
Inflatable Structures . .
Surface Power (< 1 MWe) . . . .
Mobile Power Systems . . . . .
Thermal Control . . . .
Surface Power (> 1 MWe) . . . .
EVA Systems Technology . . . . .
Dust Contamination Control . . . . .
Lunar Oxygen Production . . . . .
Mining Technology . . . . .
Mars Water Extraction . . . . .
Mineral Beneficiation - . . . . .
Essential Element Extraction . . . . .
Lunar Ceramics Production . . . . .
Lunar Hydrogen Production . . . . .
Lunar Metals Production . . . . .
Mars Atmospheric Oxygen Extraction - . . . . .
Phobos/Deimos Water Extraction . . . . .
Propellant Storage and Transfer . . . . .
RLSS Supporting Technologies . . . . .
Trace Contamninant Control . . . .
Waste Management . . . .
Water Recovery/Management . . . .
Atmosphere Revitalization . . . .
Food Production . . . . .
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TABLE 2.2-11 CROSSCUTTING TECHNOLOGIES - SPACE TRANSPORTATION

Technolo“ Automation Robotics Maintainabilitx Ogerabilitx FDIR

Chemical Ascent/Descent Engine . . . .
Aerocapture (Low Energy @ Earth) . .

Aerocapture (Low Energy @ Mars) . .

Aerocapture (High Energy @ Earth) . .

Aerocapture (Dual use @ Mars/Earth) . .

Antificial Gravity Vehicle . . . . .
Art.-g Vehicle Deployment/Control . . . . .
Tethers . . .

Information Management . . . .
Ka-Band Communication Technology . . . .
Cryo Fluid Storage/Management . . . . .
Cryo Fluid Transfer . . . . .
Aero Entry/Landing @ Mars . . .
Autonomous Landing - . . . . .
Direct Entry @ Earth (High Energy) . . .
Parachute System (Earth/Mars) . . . .
Radiation Protection . . . .
Long-Lived Life Support Units . . . .
Advanced Chemical Transfer Engines - . . . .
In situ Propellant Engines . . . .
High Power Electric Propulsion . . . .
Nuclear Power for NEP . . . .
Solar Power for SEP (MW class) . . . .
Nuclear Thermal Rocket Propulsion . . . .



TABLE 2.2-II CROSSCUTTING TECHNOLOGIES - NODE

Technoloﬂ Automation Robotics Maintainabilitx Ogerabilitx FDIR

In-Space Vehicle Processing/Servicing . . . .
Cryo Fluid Storage/Management . . . . .
Cryo Fluid Transfer/Handling . . . . .
In-Space Assembly - Vehicle Level . . . . .
Autonomous Rendezvous/Docking . . . . .
In-Space Assembly - Element Level . . . .
2.3 Critical Technologies Summary

Technology requirements are not pathway dependent, but assume application for either the lunar or
Mars case studies. The evolutionary case studies allow the formulation of a technology
development effort that is phased. The critical technology areas required to support a phased
program are listed in table 2.3-I. The listed critical technologies are those that are critical to the
lunar or martian exploration pathway as indicated by the check marks in table 2.3-1 and must be
started in FY91. A short summary describing the scope and benefit of the near term critical
technologies is provided.

TABLE 2.3-1 CRITICAL TECHNOLOGY NEEDS

Technolog; Lunar Mars
Near Term Enabling
Life Support Systems 4 4
EVA Systems Technology / 4
Radiation Protection "4 4
Cryogenic Fluid Management 4 7/
Cryogenic Ascent/Descent Engine 7/ v/
Near Term Enabling - Affordability
Efficient Space Transportation System 4 4
In-Space Vehicle Operations 4 4
Mid Term Enabling
Nuclear Surface Power (< 1 MWe) v v
Surface Transportation Technology 4 4
In situ Resource Utilization 4 7/
Far Term Enhancing
Aerobraking (High Energy) 4
Nuclear/Solar Electric Propulsion 4
Nuclear Thermal Rocket (Gas Core) 4
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2.3.1 Life Support Systems

No function is more critical to human exploration than that of sustaining human life. The
emphasis here is on providing the technologies that will enable life support systems for long
duration spaceflight, lunar bases, and Mars outposts. These life support systems must satisfy the
following criteria:

» highly reliable over long time periods

* require minimum, simple maintenance

+ achieve a “reasonable” degree (95%+) of closure and are capable of taking advantage of
local resources

While the environmental control and life support system (ECLSS) approach planned for Space
Station Freedom (SSF) is acceptable approach for the space station, the maintenance approach
(reliability requirements are met by frequent scheduled maintenance and component replacement)
will not be acceptable for exploration missions. Therefore, advancements in technology are needed
to assess other approaches for meeting reliability requirements.

It is recommended that in-depth conceptual definitions continue to be conducted in FY90 to define
the specific ECLSS needed for each specific system. An integrated technology development plan
needs to be developed which includes physical/chemical, hybrid, and bioregenerative life support
approaches.

2.3.2 EVA Systems Technology

Advancement in technology is required to develop the suits and portable life support systems
required to perform the EVA operations on both the Moon and Mars. The key issues that the
technology program must address are:

*  Weight (both the suit weight and PLSS)
» Flexibility, ease of use
* Long duration use (up to 8 hours)

Servicing of the current suit is required after every 21 hours of use. The servicing takes
approximately 2,100 hours to complete. This time intensive servicing schedule is unacceptable for
a productive lunar base.

2.3.3 Radiation Protection

An integrated approach needs to be developed to clearly establish the technology needs to protect
humans, and sensitive equipment, from a variety of radiation hazards in space. These hazards
include:

* Trapped particles in the van Allen belts
* solar particle events (SPE)

» galactic cosmic rays (GCR)

* nuclear reactor emissions

In particular, the impact of GCR radiation potentially has significant impacts, requiring massive

amounts of shielding. Due to uncertainties in the current computation models for predicting the
transport of radiation through materials, the estimates of required shielding can vary by a factor of
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10 or more. For example, the shield mass required for the Mars Transfer Vehicle (MTV) in the
FY89 Mars Expedition case study varies from 60 to 800 metric tons, which more than exceeds the
total mass in low Earth orbit (LEO) of the unshielded vehicle (see figure 2.3.3-1.) The
uncertainties in shielding mass can be reduced by a more accurate definition of the free space
environment, transport through materials and advancement in the state of the art in computational
models to provide more reliable, accurate predictions. Lightweight materials need to be developed
to provide adequate shielding and life science research is needed to establish safe annual and career
limits.

B Nominal == MTV IMLEO
(no shieiding)

Uncentainty

800

Shielding Mass (mt)

{full tanks) (full tanks) (empty tanks) (empty tanks)

Figure 2.3.3-1. Radiation shielding comparison for the Mars Transfer Vehicle.
2.3.4 Cryogenic Fluid Management

Virtually every approach developed to date has required the transfer and storage of propellant,
either via actual fluid transfer between tanks, or via transfer of the tank itself. Large scale transfer
has not been demonstrated in space, and must be successfully accomplished to enable missions to
either the Moon or Mars.

2.3.5 Cryogenic Ascent/Descent Propulsion

OEXP studies have identified a need for cryogenic ascent/descent propulsion systems beyond the
current state of the art, for both lunar and Mars missions. However, storable systems may be
preferable for Mars ascent/descent stages if significant quantities of in situ propellant were not
readily available. The technology issues associated with satisfying the cryogenic ascent/descent
requirements for the Moon and Mars are:

+ Long life in terms of number of starts and total burn times
« High reliability with little or no maintenance
» Throttlable over a wide range (20:1)

o Thrust ranges of 33.4 kN (7.5 kib) to 222.5 kN (50 kib)
o Permit use of in situ produced propellants
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2.3.6 Efficient Space Transportation Systems

Studies conducted in recent years have identified the need to make substantial reductions in the
initial mass in LEO required for lunar and Mars missions when using all chemical propulsive
approaches. While these missions could technically be accomplished using such an approach, the
very large mass in LEO would probably make them economically infeasible. Thus from an
affordability perspective, two approaches are currently under consideration. These approaches are
Advanced Chemical propulsion with Aerocapture and Nuclear Thermal Rocket propulsion. Figure
2.3.6-1 shows that the use of these approaches may yield reductions of mass in LEO in the range
of 70 to 85% (i.e., 2,600-3,200 metric tons) for Mars missions. Sections 2.3.6.1 through 2.3.6.3
summarize the technology needs for these approaches.

B Conjunction Class Opposition Class

4,000 .....400%
3,500
3,000
2,500

2,000

1,500

1,000
500

Case Study
" Reference

Initial Mass in LEO (mt)

AliChem  ChenvAB NTR(900) NTR (950) NTR/AB

Ref: LeRC ASAOQ, "Advanced Propulsion Comparison Study”, WGW #4 Briefing, July 12, 1989

Figure 2.3.6-1. Comparison of IMLEO using different propulsion systems for Mars
missions. [NTR(900) is a 900 Isp propulsion system, NTR(950) is a 950 Isp
propulsion system, and NTR/AB is a 900 Isp propulsion system using an
aerobrake.]

2.3.6.1 Advanced Chemical Transfer Propulsion < 445 kN (100 kIb)

Advances in chemical propulsion beyond the state-of-the-art (Centaur RL-10) is needed for lunar
and Mars space transfer vehicles. While an increase in Isp over 460 will yield significant benefits,
the driving needs for advancement are reliability and maintainability. The success of the mission
profile will require propulsion systems with inherent restart and automated self-diagnosis/failure
prediction capabilities.

A wide range of thrust-levels have been considered for lunar and Mars space transfer systems. As
indicated below, a reasonably consistent need has emerged for engines in the thrust range below
445 kN (100 klbs). The need for higher thrust levels was driven by the Trans Mars Injection Stage
(TMIS) requirements.
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Low Thrust < 445 kN (100 klbs)
lunar: 66.75-111 kN (15-25 klbs)
Mars: 33.4-111 kN (7.5-25 klbs)
High Thrust 445-2225 kN (100-500 klbs)
Mars: 667.5-2225 kN (150-500 klbs)

More study is required to understand the trade-off between thrust/engine and number of engines
needed for high thrust requirements. Three options are:

1335-2225 kN (300-500 klbs) One very large engine (derived from the SSME)

333.75-445 kN (75-100 klbs) Either an engine cluster (3-6 engines) or a single engine
with multiple burns

66.75-111 kN (15-25 klbs) An engine cluster (4-8 engines) with multiple burns

2.3.6.2 Aerocapture

Aerobraking (A/B) will significantly reduce energy requirements making lunar and Mars missions
affordable. Use of low energy (< 11 km/sec) aerobraking at Mars and at Earth results in a
reduction of 64% or more in initial mass to low Earth orbit (IMLEO) over all propulsive entry.
This requires a propulsive AV of ~ 2 km/sec prior to Earth A/B. Use of high energy (212 km/sec)
A/B at Earth saves an additional 15% IMLEO (see figure 2.3.6.2-1), but puts the vehicle in a much
different aerothermodynamic regime, requiring a major advancement in technology development.

3,500

100 %

3,000
2,500
2,000

1,500

Initial Mass in LEO (mt)

1,000

500

All Chemical ChenvAB ChenvAB
Low Energy High Energy

Figure 2.3.6.2-1. Comparison of IMLEO using high and low energy aerobraking and all
propulsive systems for Mars missions.
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The A/B technology issues are non-equilibrium radiation heating, thermal protection system (TPS),
and guidance, navigation and control (GN&C). The Aeroassist Flight Experiment (AFE) (funded
in the Civil Space Technology Initiative (CSTI) program) is an important step in developing the
technology for low energy A/B.

2.3.6.3 Nuclear Thermal Rocket propulsion (NTR)

Although NTR propulsion has been associated with Mars missions due to fast trip times and low
IMLEO (see figure 2.3.6-1), but is only occasionally discussed in Lunar applications. In order to
examine the value of NTR propulsion in support of a lunar base initiative four mission scenarios
were analyzed. Figure 2.3.6.3-1 summarizes the results of this analysis and shows that IMLEO
can be reduced by 50% for lunar missions.

300

200 |-

100 |-

Initial Mass in LEO (metric tons)

Figure 2.3.6.3-1.

B Chem
B cChem/Aero
B NR
NTR/Aero

Mission A Mission B Mission C Mission D

Comparison of IMLEO using chemical or NTR propulsion for lunar

missions.

Mission A: 20 metric tons of payload is delivered round trip from LEO to
low lunar orbit (LLO)

Mission B: 10 metric tons of payload is delivered round trip from LEO to
the lunar surface

Mission C: 10 metric tons of payload is delivered round trip from LEO to
LLO, and 30 metric tons of cargo is delivered one way from
LEOtoLLO

Mission D: 30 metric tons of cargo is delivered one way from LEO to the
lunar surface
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2.3.7 In-Space Vehicle Operations

While the lunar transfer vehicles are being designed to minimize the in-space assembly
requirements, the current requirements specify capabilities of the vehicles and Space Station
Freedom that have not been demonstrated to date. These systems must have the capability to
manipulate, mate, and join large heavy and complex spacecraft elements such as assembling the
aerobrake from several large sections, attaching the aerobrake to the vehicle, and mating separate
elements of the vehicle together.

2.4 Assessment of Need verses Availability

In developing the scope and strategy for the FY91 space technology program and budget, it is
informative to compare the readiness need level and date for each technology with the projected
available level and date for the appropriate technology program. Table 2.4-1 shows the need level
and date for each technology with the projected available level and date for both FY90 funding
levels and unconstrained funding for the appropriate technology program. Those technologies that
will not be available in time to support the OEXP study mission are denoted by a t assuming a
FY90 OAST budget runout or a } assuming unconstrained funding. In projecting the availability
of a technology, the existing OAST technology programs were evaluated for consistency of content
with the technology needs. There are several technology needs that are not covered by any of the
existing programs. In addition, there are technology needs that are covered by existing technology
programs, but the programs are not focused to include all aspects of the needed technology. In
these cases the appropriate program to address the technology need has been identified and
designated as NFP/No Focused Program.

A summary of the current applicable technology programs are presented in section 3.
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88-CS-1.0
88-CS-2.0
88-CS-3.0
88-CS-4.0
88-SA-1.1
88-SA-1.2
89-BT-5
89-CS-2.1
89-CS4.1
89-CS-5.0
89-SA-1
89-SA-1.5
89-SA-1.7
89-SA-1.10
89-SA-1.11
89-SA-2
89-SA-2.2
89-SA-2.3
89-SA-3

TABLE 2.4-11 CASE STUDY KEY

1988 Expedition to Phobos case study

1988 Expedition to Mars case study

1988 Lunar Observatory case study

1988 Lunar Outpost to Early Mars Evolution case study
Lunar SP-100/Stirling Engine Design special assessment
Lunar Observatory Extended Stay Time Power special assessment
Fuel System Architecture broad trade study

1989 Mars Expedition case study

1989 Lunar Evolution case study

1989 Mars Evolution case study

Power special assessment

Manned High Power Rover special assessment

SP-100 Thermoelectric Lander special assessment

MMW Power Plant special assessment

Low Power Robotic Rover special assessment
Propulsion special assessment

In Situ Propellant Utilization special assessment
Advanced Propulsion options study

A&R Human Performance special assessment
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CSTY/AFE
CSTI/AUTO SYS
CSTI/BOOSTR TECH

CSTI/CNTL FLEX STR
CSTI/DATA CAPACITY

CSTI/ETO PROP
CSTI/HIGH CAP PWR

CSTI/PREC SEG REFL

CSTI/ROBOTICS
CSTI/SENSORS
DOE MMW/MMW
NFP/No Focused Prog
NP/No Program
PF/AUTO LANDER
PF/AUTO R&D
PF/B/R REQ
PF/CFD

PF/CHEM TRANS
PF/CREW PROT
PF/CV PROP
PF/EVA/SUIT
PF/HEAB

PF/HUM PERFORM
PF/IN-SP A&C
PF/ISRU
PF/OPTCL COMM
PF/P/C LSS
PF/PHOTONICS
PF/ROVER
PF/SAAP

PF/SP HUM FCTRS
PF/SP-100
PF/SURF POWER

TABLE 2.4-111 TECHNOLOGY PROGRAM KEY

Civil Space Technology Initiative - Aeroassist Flight Experiment
Civil Space Technology Initiative - Autonomous Systems

Civil Space Technology Initiative - Booster Technology

Civil Space Technology Initiative - Control of Flexible Structures
Civil Space Technology Initiative - High Rate/Capacity Data Systems
Civil Space Technology Initiative - Earth to Orbit Propulsion
Civil Space Technology Initiative - High Capacity Power

Civil Space Technology Initiative - Precision Segmented Reflectors
Civil Space Technology Initiative - Robotics

Civil Space Technology Initiative - Science Sensor Technology
Department of Energy - Multi-MegaWatt Power Program
Program not focused to exploration needs

No Program Exists

Pathfinder - Autonomous Lander

Pathfinder - Autonomous Rendezvous & Docking

Pathfinder - Bioregenerative Life Support

Pathfinder - Cryogenic Fluid Depot

Pathfinder - Chemical Transfer Propulsion

Pathfinder - Crew Protective Systems

Pathfinder - Cargo Vehicle Propulsion

Pathfinder - Extravehicular Activity/Suit

Pathfinder - High Energy Aerobraking

Pathfinder - Human Performance

Pathfinder - In-Space Assembly & Construction

Pathfinder - Resource Processing Pilot Plant

Pathfinder - Optical Communications

Pathfinder - Physical-Chemical Life Support

Pathfinder - Photonics

Pathfinder - Planetary Rover

Pathfinder - Sample Acquisition, Analysis, & Preservation
Pathfinder - Space Human Factors

Pathfinder - Space Nuclear Power

Pathfinder - Surface Power
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2.5 Summary of Technology Needs by Integration Agent

Tables 2.5-1 to 2.5-III present a listing of the same technology needs as section 2.1 sorted by IA.
These technologies are discussed by the IA’s in their respective volumes (II through IV).

TABLE 2.5-1 TECHNOLOGY NEEDS - PLANETARY SURFACE SYSTEMS

Technolon Ranking Functional Area
Construction technology I A 2 CONSTRUCTION
Surface Transportation Technology I A 2 CONSTRUCTION
Inflatable Structures I B 2 CONSTRUCTION
Surface Power (< 1 MWe) 1 A 3 ENERGY

Mobile Power Systems I A 2 ENERGY

Thermal Control I A 2 ENERGY

Surface Power (> 1 MWe) I C 2 ENERGY

EVA Systems Technology I A 3 Human Systems
Dust Contamination Control I A 3 Human Systems
Lunar Oxygen Production o0 B 2 ISRU

Mining Technology O B 2 ISRU

Mars Water Extraction I B 2 ISRU

Mineral Beneficiation II B 3 ISRU

Essential Element Extraction m C 2 ISRU

Lunar Ceramics Production Iv C 2 ISRU

Lunar Hydrogen Production Iv. C 2 ISRU

Lunar Metals Production Iv. C 2 ISRU

Mars Atmospheric Oxygen Extraction Iv. C 2 ISRU
Phobos/Deimos Water Extraction Iv C 2 ISRU

Propellant Storage and Transfer I B 2 LAUNCH & LAND
RLSS Supporting Technologies I A 2 LSS

Trace Contaminant Control I A 2 LSS

Waste Management I A 2 LSS

Water Recovery/Management I A 2 LSS

Atmosphere Revitalization I A 3 LSS

Food Production I € 2 LSS
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TABLE 2.5-11 TECHNOLOGY NEEDS - SPACE TRANSPORTATION

Technolo“ Rankins Functional Area
Chemical Ascent/Descent Engine A A/D CHEM PROP
Aerocapture {(Low Energy @ Earth) AEROCAPTURE
Aerocapture (Low Energy @ Mars) AEROCAPTURE
Aecrocapture (High Energy @ Earth) AEROCAPTURE
Aerocapture (Dual use @ Mars/Earth) AEROCAPTURE
Artificial Gravity Vehicle ARTIFICIAL-G SYS
Artificial-g Vehicle Deployment and Control ARTIFICIAL-G SYS
Tethers ARTIFICIAL-G SYS
Information Management COMMUNICATION
Ka-Band Communications Technology COMMUNICATION
Cryo Fluid Supply/Storage/Management CRYO FLUID MGT
Cryo Fluid Transfer CRYO FLUID MGT

Aero Entry/Landing @ Mars
Autonomous Landing

Direct Entry @ Earth (High Energy)
Parachute System (Earth/Mars)
Radiation Protection

Long-Lived Life Support Units
Advanced Chemical Transfer Engines
In situ Propellant Engines '
High Power Electric Propulsion (MW class)
Nuclear Power for NEP

Solar Power for SEP (MW class)
Nuclear Thermal Rocket Propulsion

R 2d2EBZ2~=-~22Hr-~~HBHEHIIIIIILm -~
>0 000> > > > > >>>>>>>>> 0> >

W NN N R W W N W N NV W W W W W Wi = N NN W

ENTRY SYSTEMS
ENTRY SYSTEMS
ENTRY SYSTEMS
ENTRY SYSTEMS
Human Systems
LSS

STV CHEM PROP
STV CHEM PROP
STV ELEC PROP
STV ELEC PROP
STV ELEC PROP
STV NTR PROP

TABLE 2.5-1l1 TECHNOLOGY NEEDS - NODE

Technology Rnnkini Functional Area
Cryo Fluid Supply/Storage/Management I A 3 CRYOFLUID MGT
Cryo Fluid Transfer/Handling I A 3 CRYOFLUID MGT
In-Space Vehicle Processing/Servicing I A 2 In-SpaceOps
In-Space Assembly - Vehicle Level I A 2 InSpaceOps
Autonomous Rendezvous and Docking M A 1 In-SpaceOps
In-Space Assembly - Element Level M A 2 In-SpaceOps
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3 Technology Program Summary

This section summarizes the technology programs which are applicable to the lunar and Mars
exploration program. As shown in section 2.4, existing programs are insufficient to produce the
required technologies in the required time frame. The Pathfinder and CSTI programs have the
most direct applicability to human space exploration. Pathfinder is a NASA initiative to develop
capabilities to enable future exploration missions. CSTI is a focused effort to develop a technology
base for future missions with emphasis on efficient, reliable access to and in support of science
missions from Earth orbit.

There are several technologies that are needed for human exploration that are not currently covered
in a technology program. These include construction technology, inflatable structures, artificial
gravity vehicle deployment, high energy direct entry systems, parachute systems, tethers, and solar
electric propulsion. There are a number of technology needs that are not fully covered by existing
programs. In these case the scope and/or focus of an existing program must be modified to
accommodate the specific need. These include ISRU, mining, mobile power, surface propellant
storage and transfer, surface power (> 1 MWe), surface transportation, thermal control, in-space
vehicle processing and servicing, dual use aerobraking, artificial gravity vehicle design, radiation
protection, in situ propellant engines, and nuclear propulsion.

3.1 Pathfinder Element Programs

Pathfinder is a NASA initiative to develop critical capabilities to enable future exploration missions.
Key performance-related objectives are to produce critical research results and validate capabilities
by 1993 and achieve necessary levels of readiness and transition technologies to mission users
commencing in the mid-1990's. Pathfinder consists of four major program areas (Surface
Exploration, In Space Operations, Humans in Space, and Space Transfer). Within the four major
program areas are 20 element programs. The following subsections contain a brief summary of
each of these elements.

3.1.1 Surface Exploration
3.1.1.1 Planetary Rover

Objectives of the planetary rover program are to develop and validate the technologies needed to
enable robotic and manned exploration of various planetary surfaces and enhance in situ science.
The near-term program will focus on developing selected technologies for robotic rovers,
demonstrating those technologies in integrated testbeds and conducting studies of high leverage
rover architectures. The areas to be addressed are mobility, autonomous guidance, sampling
robotics, and rover power. This program will extend work conducted in FY88-90 at Carnegie
Mellon University and builds on terrestrial programs (Department of Defense (DoD), Defense
Advanced Research Projects Agency’s (DARPA) strategic computing and autonomous land vehicle
programs, the VHSIC (very high speed integrated circuit) advanced computing program, and the
Department of Energy’s (DoE) modular radioisotope thermal generator (RTG) program).

3.1.1.2 Sample Acquisition, Analysis, and Preservation (SAAP)

The SAAP program will develop the technologies required for collection and analysis (both in situ
and Earth return) of scientifically valuable specimens from a planet’s surface and near-subsurface.
These technologies include: site and sample recognition and selection; sample acquisition,
preparation, and processing; sample analysis; and storage and preservation. The elements of this
program will be integrated for a technology demonstration/validation in the FY 92-94 timeframe.
Primary emphasis will be placed on system design, site and sample recognition/selection, sample
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preparation and analysis methods, rock core drilling, sample acquisition tools, and containment
methods. Secondary elements include long-term environmental control, soil coring, and integrated
testbeds. Initially, the technology developed will be coordinated with the needs of the Mars
Sample Return mission.

3.1.1.3 Autonomous Lander

The Autonomous Lander program will develop and demonstrate the technology needed to land a
planetary exploration spacecraft safely in the face of surface hazards provided by rough terrain,
while still landing close enough to the target site to meet mission requircments. Plans call for
establishing mission constraints and requirements, developing and demonstrating the technology
required to enable precision landing at a pre-planned site, and developing and demonstrating the
technology for real-time hazard avoidance during the final landing stages (sensors for hazard
detection, algorithms for image processing, scene understanding and guidance, real-time image
processing, and system autonomy and mechanization are required).

3.1.1.4 Surface Power

The surface power program will develop a technology base that will support the development of
planetary surface power systems capable of delivering 25 to 100 kilowatts of user power. In cases
of sustained base operations, it is anticipated that the start-up solar power system will later serve as
an emergency back-up power source for the expected nuclear power system. The areas to be
addressed will involve either photovoltaic or solar dynamic technologies, energy storage
technologies which are likely to focus on regenerative fuel cells, and environmental
countermeasures.

Energy storage technology for regenerative fuel cells will encompass: high temperature oxygen
electrode catalysts, gas/liquid/thermal management systems, and tanks for gaseous reactant
storage. Efforts in amorphous silicon photovoltaic cell technology will be directed at increased
efficiency, reduced mass, and improved lifetime and reliability. Solar dynamic approaches will be

evaluated relative to ongoing programs in concentrators, receivers, and energy conversion
systems.

3.1.1.5 Photonics (initiation deferred to 1990)

The photonics program will (1) develop fault tolerant, high data rate networks for space systems
such as autonomous spacecraft, interplanetary transfer vehicles, and habitats, (2) enable safe
traverses by a rover at higher speeds and lesser power than all-electronic systems by use of optical
pattern recognition (note that multi-spectral processors and a Ka-band phased array radar will be
developed to support this capability), and (3) enable electronic vision systems for automated
landings and have up to three orders of magnitude reduction in processing requirements through
the use of a photonics preprocessor. In the latter case, related technologies include photonic
sensors, integrated optical switches, fiber optic control of monolithic microwave integrated circuit
(MMIC) chips, and image processing architectures. This program will leverage on-going research
being conducted by DoD, industry, and universities.

3.1.2 In Space Operations

3.1.2.1 Autonomous Rendezvous and Docking

This program will develop and demonstrate hardware and software technologies and technical
approaches for autonomous/automated rendezvous and docking to support lunar and Mars

missions. Sensors that have long and short range tracking and relative navigation capability will be
developed to meet system requirements. Trajectory control techniques and candidate GN&C
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designs will be developed and evaluated in computer simulations and flat floor testbeds and will
incorporate sensor concepts proposed for consideration.

3.1.2.2 In-Space Assembly and Construction

This program will develop the basic technology to construct large, massive structures and complex
vehicles in space. Objectives of the program are to (1) define and develop methodologies for
constructing generic spacecraft components, (2) develop joining processes (welding, bonding, and
mechanical attachment), (3) develop the ability to manipulate and position large massive vehicle
components, and (4) define a layout and infrastructure for a facility having a high degree of
construction flexibility, adaptability, autonomy, and commonality.

3.1.2.3 Cryogenic Fluid Depot

The cryogenic fluid depot program is directed towards development and demonstration of the
technology required to store, supply, and transfer subcritical cryogenic liquids in a microgravity
environment. Specific objectives include development of depot conceptual designs, fluid
management and depot operations, structures and materials, orbital operations and logistics,
refrigeration, and safety. This program currently has limited storage and fluids transfer focus.

3.1.2.4 Space Nuclear Power SP-100

The Space Nuclear Power (SP-100) program represents NASA’s participation in DoE’s GSP-100
Ground Engineering System (GES) Project. This program will develop and validate technology
for space nuclear power systems that can produce tens to hundreds of kilowatts of electric power
and be capable of 7 years of operational life at full power. This program focuses on lunar and
Mars outpost power systems, and Nuclear Electric Propulsion (NEP) robotic solar system
exploration.

GES is focused on developing and validating the system through a Nuclear Assembly Test (NAT)
and Integrated Assembly Test (IAT). Advancements will be required in several areas, including
high temperature (1350 K) refractory alloys, high temperature control devices, thermoelectric-
electromagnetic pumps, high efficiency thermoelectric converters, light-weight heat pipe radiators,
and power conditioning and control. Safety related aspects of the system are a major thrust of the
research.

3.1.2.5 Resource Processing Pilot Plant (initiation deferred to 1990)

The resource processing pilot plant program will focus on developing the technology for the
collection, extraction, and processing of useful materials from extraterrestrial resources. The initial
emphasis will be on the production of oxygen, metals, and construction materials on the Moon.
Emphasis is on developing and evaluating chemical/physical processes, both analytically and
experimentally, for producing these materials. Other technologies requiring advancement are:
materials analysis sensors, mechanical separation/extraction, electrochemical separation/extraction,
and robotic collection and handling.

3.1.2.6 Optical Communications (initiation deferred to 1990)

The optical communications program will develop the flight-qualified component and system
technologies required to demonstrate the transfer of data at mega to gigabit per second rates from
LEO to geostationary Earth orbit (GEO), GEO to GEO, and deep space to Earth and/or LEO.
Critical technology objectives include the development of lightweight highly efficient laser
transmitters, high precision pointing and tracking systems, large aperture lightweight receiver
telescopes, and high sensitivity direct and heterodyne detection systems. The components will be
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engineered and tested in a LEO demonstration. Optical pointing, tracking, and communication
performance will be demonstrated by returning data at a 20 megabit per second rate from Mars to
either GEO, LEO, or Earth. The latter objective may be accomplished through an experiment
package aboard Cassini.

The focus in this program will be on the Shuttle-based Laser Technology Experiment Facility and
the Cassini flight experiment package. This research thrust, which builds on OAST’s Research
and Technology (R&T) base, includes such areas as laser transmitters, sub-microradian accuracy,
open and closed loop pointing and tracking systems, direct and heterodyne detection components
for receivers, and associated optical components such as mirrors, lenses, and filters.

3.1.3 Humans in Space
3.1.3.1 EVA/Suit

Objectives of the EVA/Suit program are to provide a technology base and a capability for humans
to perform extraterrestrial EVA for extended periods. A reliable technology base for a high
mobility, serviceable EVA suit, with a compact fully regenerable, portable life support system will
be developed. Tools, unique end effectors, lightweight materials, thermal management,
environmental countermeasures, and communications technologies will be demonstrated in tandem
with these development efforts. This program supports only planetary surface EVA/Suits. There
is no specific program targeted at in-space EV A/suits.

3.1.3.2 Human Performance

The human performance program will determine technology requirements for: human factors,
artificial gravity, and radiation. Human factors will provide the technology and information base to
enhance and maintain the safety and productivity of crews on long-duration missions. The major
thrusts included in this area are: (1) crew (organization, selection, training, interpersonal
interactions, and communications), (2) environment (habitability and stress), and (3) performance
(mission task analysis and human-machine interface).

Artificial gravity research is directed at developing, by the early 1990’s, a foundation to support
decisions regarding the use of artificial gravity and to follow up with Shuttle-based experiments in
the mid-1990’s. Areas of research include investigation of behavioral and physiological effects of
artificial gravity and assessment of artificial gravity options.

In the area of radiation, related research will develop an understanding of the radiation threat to
humans and identify and develop techniques for protecting the crew from unnecessary radiation
risk. In particular, it will be important to estimate the radiation doses and assess potential effects
from acute and chronic exposure to radiation and to identify and develop technological
countermeasures for minimizing radiation-induced damage from galactic cosmic rays and solar
particle events.

3.1.3.3 Space Human Factors

The objective of the space human factors program is to enable safe and productive human
performance throughout and after long duration space flight and lunar/planetary missions. This
program will focus on: (1) human performance models and databases, (2) design tools for
addressing man-machine interfaces, (3) crew support systems, (4) human capabilities enhancement
techniques for information display and integration, and (5) human-automation-robotic systems.
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3.1.3.4 Crew Protective Systems

The crew protective systems program will focus on the research and technology to enable
countermeasures against the adverse physiological effects of long-term microgravity and in-space
exposure to radiation. More specifically, it will address artificial gravity systems and radiation
protection (including vehicle/system design strategies and materials). This program is at a low
level of planning maturity.

3.1.3.5 Physical/Chemical Life Support

The physical-chemical life support program will emphasize the development of highly efficient air
revitalization, water reclamation, waste treatment, air and water quality, and thermal control
technologies. These technologies will be developed and integrated into a total life support system
to minimize the requirements for stored consumables and decrease or eliminate the resupply
requirements (selected aspects of food management and bioregenerative systems will be

developed).

Air revitalization will address oxygen generation, carbon dioxide removal, nitrogen generation,
trace and microbial contaminant removal, and water reclamation and solid waste treatment
management. Development issues related to the use of materials from local resources, interfaces
with portable life support systems, and use of artificial intelligence and expert knowledge systems
also will be addressed.

3.1.3.6 Bioregenerative Life Support System

The goal of this program is to identify requirements for exploration mission applications of
bioregenerative life support. This goal includes identifying the conditions of advantage over the
Physical/Chemical Closed Loop LSS alone, identifying candidate technologies, and identifying the
extent different waste streams must be processed for recycling to a plant growth chamber. The
Bioregenerative Life Support program will determine the engineering and system performance
requirements for biologically-based systems and sub-systems technologies to provide food
production and processing, and waste management. This program represents an enhancement to
the Controlled Ecological Life Support System (CELSS) program, managed by the OSSA Life
Sciences Division.

3.1.4 Space Transfer
3.1.4.1 Chemical Transfer Propulsion

The objective of the chemical transfer propulsion program is to develop space-based, high
performance chemical transfer propulsion systems as well as lander propulsion systems to provide
high performance over a wide throttle range. A LOx/LH2 expander cycle engine has been
identified as the primary candidate propulsion system that will meet these requirements.
Development technologies include high performance variable flow components, high expansion
ratio nozzle flow characterization, design for in-space maintainability, and integrated health
monitoring/control systems that will provide automated preflight operations as well as fault tolerant
engine flight operations. This program will validate high performance expander cycle engine
concepts, including high pressure cycle balance demonstrations, component interaction
predictions, engine controls, and system level health monitoring.
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3.1.4.2 High Energy Aerobraking

The high energy aerobraking program will identify the technology requirements for uses of
aerobraking at Earth and Mars with entry velocities up to 14 km/s. This aerobraking program will
be conducted in two phases. Phase I will establish mission requirements, develop/improve
computational fluid dynamics (CFD) codes, develop/validate fault-tolerant GN&C, and evaluate
advanced thermal protection system materials and designs. Flight validation in a “Planetary Return
Flight Experiment” will be considered in Phase II and will be coordinated with the CSTI Aeroassist
Flight Experiment.

3.1.4.3 Cargo Vehicle Propulsion

The cargo vehicle propulsion program will establish the feasibility of high performance electric
propulsion for manned and robotic solar system exploration. The performance objectives of the
program are: high specific impulse (over 4000 Isp); high efficiency (over 60%); and acceptable
life. The electric propulsion technologies developed must also be scalable to multi-megawatt
power levels. Sufficient durability will enable a total impulse on the order of 108 newton-seconds
per engine. After development and testing, the most promising thruster (ion or
magnetoplasmadynamic) will be selected for further development.

3.2 CSTI Element Programs

The role of CSTI is to produce technologies addressing areas where a broadened technology base
is required, and specific user needs exist. CSTI includes three major programs (Transportation,
Operations, and Science). Within the three major program areas are ten element programs. The
following subsections contain a brief summary of each of these elements.

3.2.1 Transportation
3.2.1.1 Earth-to-Orbit Propulsion

The goal of the Earth-to-Orbit (ETO) Propulsion program is to provide the technology base
necessary to proceed with the development of higher performance, longer-life, low life-cycle-cost
pump-fed oxygen/hydrogen and oxygen/hydrocarbon rocket engines. Although focused primarily
on fully reusable manned vehicles, the resulting design and development tools will be applicable to
expendable or partially reusable cargo delivery vehicles.

In order to meet these objectives, the ETO Propulsion program will focus on key rocket engine
technology issues such as, performance enhancements, increased component durability, the ability
to accurately predict component/engine performance service life, increased quality and reliability,
and the development of real-time onboard engine-condition monitoring, safety monitoring, and
engine controls aimed at both lower cost and more reliable ground and flight operations. The
program is organized around three major rocket engine subsystems: (1) combustion devices,
including main thrust chambers and turbine drive gas generators; (2) turbomachinery; and (3)
system monitoring and control.

3.2.1.2 Booster Technology

The CSTI Booster Technology program will develop and validate design and analysis tools needed
for future development of large scale hybrid and pressure-fed liquid booster propulsion concepts as
alternates to solid rocket motors. These alternate booster propulsion concepts will include
emergency shut-down capability, thrust throttlability and tailoring, increased performance, lower
cost propellant, and the potential for eliminating environmental contamination.

3-6



Pressure-fed liquid efforts will address technologies unique to low pressure, high thrust
propulsion systems and will augment the ETO propulsion activity that is focused on high chamber
pressure, high thrust pump-fed systems. This program will develop and validate analytical models
and advanced design concepts through component level and large scale [3337.5 kN (750 klbs)
thrust] system level pressure-fed booster testing.

Hybrid technology efforts will develop and validate a data base for low cost hybrid boosters
consisting of a pump or pressure-fed liquid oxidizer and rubber-based solid fuel. Analytical tools
and advanced hybrid design concepts will be developed and validated through component level and
large scale system level testing.

3.2.1.3 Aeroassist Flight Experiment (AFE)

The AFE program will investigate the critical vehicle design technologies and upper atmospheric
characteristics applicable to an Aeroassisted Space Transfer Vehicle (ASTV). The aeroassisted
maneuver offers a propellant saving that would otherwise be required to perform braking and/or
orbital capture engine firings. Because the flight region of the ASTYV is unique from other
missions and there are no ground test facilities to support simulations, a flight experiment will be
required.

AFE will develop a flight database for definition of the environment in which the ASTV will fly
and will result in aerothermodynamic/thermodynamic flight-validated CFD codes. The program
will also demonstrate GN&C techniques and provide alternate thermal protection system materials
to allow development of lightweight, flexible drag-device concepts.

3.2.2 Operations
3.2.2.1 Control of Flexible Structures

The control of flexible structures program will develop structures and controls technology to enable
the design, verification, and qualification of precision space structures and large flexible space
systems. The objectives of this program include developing control structures interaction (CSI)
systems and concepts, integrated analysis and design, ground test methodology, and in-space
flight experiments.

3.2.2.2 Autonomous Systems

The autonomous systems program will develop, integrate, and demonstrate artificial intelligence
technology research. The program includes five research areas: planning and reasoning, control
execution, operator interface, systems architecture and integration, and demonstration (Space
Station testbeds and specific domain demonstrations).

3.2.2.3 Robotics

The robotics program will develop the technology base to support the evolution from teleoperations
to telerobotics. The program includes five core activities: sensing and perception, planning and
reasoning, control execution, operator interface, system architecture and integration, and
integration telerobotic testbed.

The program is focused towards a ground-demonstrated integrated laboratory telerobot that

combines the immediacy of execution of teleoperation with the efficiency and precision of
supervised autonomy. In addition, advanced technologies for the Space Station Flight Telerobotic
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Servicer will be developed (system architecture, testbed software and taskboards, force reflecting
hand controllers, flight-like manipulator arms and software, and machine vision subsystem).

3.2.2.4 High Capacity Power (HCP)

The HCP program will develop the technology base to support long duration, high capacity power
requirements for NASA initiatives, focus on increasing system thermal and electric energy
conversion efficiency at least fivefold, and achieving systems compatible with space nuclear
reactors. There are six areas of activity: free-piston Stirling power convertor, thermoelectric
power converters, thermal management system, power management, system diagnostics, and
environmental.

3.2.3 Science
3.2.3.1 Precision Segmented Reflectors

The objectives of the precision segmented reflectors program is to develop the materials,
structures, and control technology to enable the design of large, lightweight, high precision
orbiting astronomical instruments. Three key areas of activity include: precision segmented
reflector integration, panel technology, and precision segmented reflector primary structures and
controls.

3.2.3.2 Science Sensor Technology

The science sensor technology program will provide the basis for the development and
implementation of scientific sensing instruments for missions investigating the Earth, solar system,
and universe. To avoid atmospheric absorption, future instruments will operate from Earth orbit, a
fact accounted for in current research. There are four elements to this program: passive non-
coherent systems, passive coherent systems, active systems, and cryogenic systems.

3.2.3.3 High Rate/Capacity Data

The objective of the high rate/capacity data program is to develop systems in high speed, high
volume data handling for future science missions. This program includes four elements:
technology planning and architecture definition, technology development, engineering development
modules, and testbed. Technologies being developed include: high rate image processor,
synthetic aperture radar (SAR) processor development, general purpose components, and storage
technology.
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4 Recommendations

The current Pathfinder program does not have the scope or funding level to support the OEXP
technology requirements as defined by the FY89 case studies as shown in table 2.4-1. To
accomplish exploration missions to the Moon and Mars it will be necessary to significantly increase
the scope and funding for the technologies required.

The crosscutting technologies listed in section 2.2 are considered an integral component of the
technologies required for the total program to accomplish its goals. While these crosscutting
technologies are not specifically listed as areas of separate technology development, their
importance cannot be over emphasized. They must be funded at the necessary level and focused to
other technology areas.

The ExXTWG has been instrumental in the formulation of this document and it is recommended that
this group be maintained as an advisory committee to OEXP to support and review the technology
programs and progress as the lunar and Mars program matures.

A technology symposium once a year on the technologies that are being used to support the
program is recommended to allow the community to present the status, progress, and other
information pertinent to OEXP.

There are several technology programs currently supported by Pathfinder and CSTI that must have
continued funding in the future. Some of these programs are: SP-100, AFE, and Closed
Regenerative Life Support. These technologies will be required to support early phases of human
exploration.

Technology development will require the coordination of several Headquarters offices to
accomplish an evolutionary exploration program. OEXP must provide mission schedules to allow
for the timely development of technology and allow for the development of long lead-time
technologies by the technology development offices within NASA.

The magnitude of a lunar or Mars exploration technology development program will necessitate the
coordination of most of the NASA Headquarters offices and other research facilities such as
DARPA, national laboratories, universities, and industry. It is recommended that a multi-
government, academic, and industrial group be established to advise OEXP on the resolution of
technology problems.

4-1






5 Acknowledgements

Many people have contributed to the process of determining technology needs for human
exploration. Certainly all members of the OEXP study team have, in one way or another, made
significant contributions. Major contributions have come from the OEXP Integration Agents. The
conceptual definition of the various systems required for human exploration form the very basis
and foundation for credible identification of technology needs. Similarly, the contributions from
the Special Assessment Agents are of particular significance. The SAA’s study results yield
valuable data to help understand the benefit and feasibility of the various systems and technologies.

Another key ingredient has come from the interaction with and participation of the OAST
technology working groups, such as the High Energy Aerobrake Working Group. These
interactions have not only yielded more credible systems and concepts in the OEXP case studies,
but have been of considerable value in the technology identification process. The OEXP team has
a greater awareness of the technology issues and concerns thanks to these working groups.

The recently formed EXTWG has been instrumental in formulating and reviewing this particular
assessment. The ExXTWG has served a very valuable function of developing an integrated
technology assessment that cuts across all IA’s and SAA’s. In particular, the MASE Technology
Agent has been instrumental in the overall integration and synthesis of the exploration technology
needs.

Finally, John Mankins, the OAST Pathfinder Program Manager has been of great assistance in the

formulation of the identification process, and in determining the data to be documented that will
ensure that the results be of benefit to both the OAST and OEXP communities.
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88-CS-1.0
88-CS-2.0
88-CS-3.0
88-CS-4.0
88-SA-1.1
88-SA-1.2
89-BT-5
89-CS-2.1
89-CS4.1
89-CS-5.0
89-SA-1
89-SA-1.10
89-SA-1.11
89-SA-1.5
89-5A-1.7
89-SA-2
89-SA-2.2
89-SA-2.3
89-SA-3
A&R

ASTV

AUTO LANDER

AUTOR&D
AUTO SYS
B/R REQ

BOOSTR TECH

CELSS
CFD
CFD

CHEM TRANS

Acronyms and Abbreviations

1988 Expedition to Phobos case study

1988 Expedition to Mars case study

1988 Lunar Observatory case study

1988 Lunar Outpost to Early Mars Evolution case study
Lunar SP-100/Stirling Engine Design special assessment
Lunar Observatory Extended Stay Time Power special assessment
Fuel System Architecture broad trade study

1989 Mars Expedition case study

1989 Lunar Evolution case study

1989 Mars Evolution case study

Power special assessment

MMW Power Plant special assessment

Low Power Robotic Rover special assessment
Manned High Power Rover special assessment
SP-100 Thermoelectric Lander special assessment
Propulsion special assessment

In Situ Propellant Utilization special assessment
Advanced Propulsion options study

A&R Human Performance special assessment
automation and robotics

aerobraking

Acroassist Flight Experiment

as low as reasonably achievable

advanced launch system

Ames Research Center

atmosphere revitalization system

Aeroassisted Space Transfer Vehicle

Autonomous Lander

Autonomous Rendezvous & Docking
Autonomous Systems

Bioregenerative Life Support Requirements
Booster Technology

controlled ecological life support system
computational fluid dynamics

Cryogenic Fluid Depot

Chemical Transfer Propulsion
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CM center of mass

CNTL FLEX STR Control of Flexible Structures -

Code E Office of Space Science and Applications (OSSA)
Code M Office of Space Flight (OSF)

CodeR Office of Aeronautics and Space Technology (OAST)
Code S Office of Space Station (OSS)

Code T Office of Space Operations (OSO)

Code Z Office of Exploration (OEXP)

CREW PROT Crew Protective Systems

CSI control structures interaction

CSTI Civil Space Technology Initiative

CTvV cargo transfer vehicle

CV PROP Cargo Vehicle Propulsion

DARPA Defense Advanced Research Projects Agency
DATA CAPACITY High Rate/Capacity Data Systems

dep departure

DMS data management system

DoD Department of Defense

DOE MMW/MMW : Department of Energy - Multi-MegaWatt Power Program
DoE Department of Energy

DSB deep space burn

ECCV Earth crew capture vehicle

ECLSS environmental control and life support system
ECV electric cargo vehicle

ELV expendable launch vehicle

EMU extravehicular mobility unit

EOC Earth orbital capture

EOS Earth observational satellites

ETM Earth-to-Mars

ETO Earth-to-orbit

ETO PROP Earth to Orbit Propulsion

EVA extravehicular activity

ExTWG Exploration Technology Working Group
FDIR fault detection, isolation, and recovery

FY fiscal year

GCR galactic cosmic radiation

GEO geostationary Earth orbit

GN&C guidance, navigation, and control
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GPBS gigabytes per second

HCP high capacity power

HEAB High Energy Aerobraking

HIGH CAP PWR High Capacity Power

HLLV heavy lift launch vehicle

HMF health maintenance facility

HUM PERFORM Human Performance Requirements
IA Integration Agent

IMLEO initial mass to low Earth orbit
IN-SP A&C In-Space Assembly & Construction
INS inertial navigation system

10C initial operational capability

Isp specific Impulse

ISPP in situ propellant production
ISRU In Situ Resource Utilization

v interplanetary transfer vehicle

JPL Jet Propulsion Laboratory

ISC Johnson Space Center

KSC ' Kennedy Space Center

kWe kilowatts — electric

kWt kilowatts - thermal

L/D lift to drag ratio

LANL Los Alamos National Laboratory
LaRC Langley Research Center

LEO low Earth orbit

LeRC Lewis Research Center

LLO low Lunar orbit

LOX liquid oxygen

LSS life support system

MASE Mission Analysis and Systems Engineering
MAV Mars ascent vehicle

MCSV Mars crew sortie vehicle

MCV Mars cargo vehicle

MDV Mars descent vehicle

MELS Mars entry and landing system
MLM Mars landing module

MMIC monolithic microwave integrated circuit
MMU manned maneuvering unit
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MMW

MOC

MPV

MRSR

MSFC

MWe

MWt

NASA

NEP

NERVA
NFP/No Focused Prog
NP/No Program
NRX

NTR

OAST

OEXP

oMV

OPTCL COMM
OSF

0sO

0SS

OSSA

OTA

oTv

P/C LSS

PF

Ph/D
PHOTONICS
PLSS

PREC SEG REFL
PSS

PTV

PVA

QF

R&D

R&T

RCS

rem

multi-megawatt

Mars orbital capture

Mars piloted vehicle

Mars Rover/Sample Return

Marshall Space Flight Center

megawatts — electric

megawatts — thermal

National Aeronautics and Space Administration
nuclear electric propulsion

Nuclear Engine for Rocket Vehicle Application
Program not focused to exploration needs
No Program Exists

Nuclear Reactor Experiment

nuclear thermal rocket

Office of Aeronautics and Space Technology
Office of Exploration

orbital maneuvering vehicle

Optical Communications

Office of Space Flight

Office of Space Operations

Office of Space Station

Office of Space Science and Applications
Office of Technology Assessment

orbital transfer vehicle
Physical-Chemical Life Support
Pathfinder

Phobos/Deimos

Photonics

portable life support system

Precision Segmented Reflectors
Planetary Surface System

personnel transfer vehicle

photovoltaic array

quality factor

Research and Development

Research and Technology

reaction control system

roentgen-equivalent man
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RFC
RLSS
ROVER
pm
RTG
RTLT
SAA
SAAP
SCNTR
SE
SENSORS
SP HUM FCTRS
SP-100
SP-100
SPE

SR

SRD
SSF
SSME
STS
STV
SURF POWER
Sy

/W
TBD
TEI

™I
TNDB
TPS
TVS
VCS
VHSIC
VLBI
WC-SPE
WMS

rechargeable fuel cells
regenerable life support system
Planetary Rover

revolutions per minute
radioisotope thermal generator
return trip light time

Special Assessment Agent
sample acquisition, analysis, and preservation
solid core nuclear thermal rocket
Stirling engine

Science Sensor Technology
Space Human Factors

Space Nuclear Power program
100 kWe-class space power system
solar particle event

sample retum

Studies Requirement Document
Space Station Freedom

Space Shuttle Main Engine
space transportation system
space transfer vehicle

Surface Power

sievert (1.0 SV = 100 rem)
thrust to weight ratio

1o be determined

trans-Earth injection

trans-Mars injection

Technology Needs Database
thermal protection system
thermodynamic vent system
vapor cooled shield

very high speed integrated circuit
very long baseline interferometry
worst credible solar particle event
wasie management system
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